Analysis and Design of a 300-W 500 000-r/min Slotless Self-Bearing Permanent-Magnet Motor
نویسندگان
چکیده
Active magnetic bearings enable contactless operation and can therefore be used for supporting rotors spinning at high speeds. However, the rotational speed in conventional reluctance-force-based magnetic bearing topologies is limited, which is mainly due to high rotor losses and limited force control bandwidths. In this paper, a prototype of a self-bearing motor is presented, which overcomes several limitations of state-of-the-art high-speed magnetically levitated electric drive systems. Due to the employed magnetic bearing, the motor can be operated in high-purity or vacuum environments. An analytical mechanical and electrical bearing model is introduced and verified by measurements. Furthermore, a bearing inverter system is designed, and its controller performance is shown. Measurements of spinning levitated rotors up to speeds of 505 000 r/min verify the functionality of the overall system. To the authors’ knowledge, this is the highest speed achieved by magnetically levitated electrical drive systems so far.
منابع مشابه
Double Layer Magnet Design Technique for Cogging Torque Reduction of Dual Rotor Single Stator Axial Flux Brushless DC Motor
Cogging torque is the major limitation of axial flux permanent magnet motors. The reduction of cogging torque during the design process is highly desirable to enhance the overall performance of axial flux permanent magnet motors. This paper presents a double-layer magnet design technique for cogging torque reduction of axial flux permanent magnet motor. Initially, 250 W, 150 rpm axial flux brus...
متن کاملDesign Optimization of Axial Flux Surface Mounted Permanent Magnet Brushless DC Motor For Electrical Vehicle Based on Genetic Algorithm
This paper presents the design optimization of axial flux surface mounted Permanent Magnet Brushless DC motor based on genetic algorithm for an electrical vehicle application. The rating of the motor calculated form vehicle dynamics is 250 W, 150 rpm. The axial flux surface mounted Permanent Magnet Brushless DC (PMBLDC) motor was designed to fit in the rim of the wheel. There are several design...
متن کاملCogging Torque Reduction of Sandwiched Stator Axial Flux Permanent Magnet Brushless DC Motor using Magnet Notching Technique
Cogging torque reduction of axial flux permanent magnet brushless dc (PMBLDC) motor is an important issue which demands attention of machine designers during design process. This paper presents magnet notching technique to reduce cogging torque of axial flux PMBLDC motor designed for electric vehicle application. Reference axial flux PMBLDC motor of 250 W, 150 rpm is designed with 48 stator slo...
متن کاملExperimental and 3D Finite Element Analysis of a Slotless Air-Cored Axial Flux PMSG for Wind Turbine Application
In this research paper, the performance of an air-cored axial flux permanent magnet synchronous generator is evaluated for low speed, direct drive applications using 3D finite element modeling and experimental tests. The structure of the considered machine consists of double rotor and coreless stator, which results in the absence of core losses, reduction of stator weight and elimination of cog...
متن کاملOptimum Design of a Five-Phase Permanent Magnet Synchronous Motor for Underwater Vehicles by use of Particle Swarm Optimization
Permanent magnet synchronous motors are efficient motors, which have widespread applications in electric industry due to their noticeable features. One of the interesting applications of such motors is in underwater vehicles. In these cases, reaching to minimum volume and high torque of the motor are the major concern. Design optimization can enhance their merits considerably, thus reduce volum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Industrial Electronics
دوره 61 شماره
صفحات -
تاریخ انتشار 2014